A LONG JAMES SPACE

G. A. Edgar

This paper investigates some of the measurability properties of the James-type Banach space $J(w_1)$ obtained with an uncountable ordinal for index set. This space $J(w_1)$ is a second dual space with the Radon-Nikodym Property but is not weakly compactly generated. This answers a question of P. Morris reported in [1, p. 87]. (This question has also been answered by W. J. Davis, unpublished.) The space $J(w_1)$ is a dual RNP space, but it admits no equivalent weakly locally uniformly convex dual norm. This answers a question in Diestel-Uhl [1, p. 212]. The space $J(w_1)$ is a dual RNP space, but there is a bounded, scalarly measurable function on some probability space with values in $J(w_1)$ that is not Pettis integrable. The previously known "examples" of this phenomenon depend on the existence of a measurable cardinal [3, Example (1)]. The space is a dual RNP space, but the weak and weak* Borel sets are not the same. This answers a question asked in [10] and [4].

Other properties of this space can be found in the literature. For example, Hagler and Odell [6] have shown that every infinite-dimensional subspace of $J(w_1)$ contains an isomorphic copy of ℓ^2 .

We will use the following definitions for transfinite series and bases in a Banach space X. Let η be an ordinal, and let $x_{\alpha} \in X$ be given for each $\alpha < \eta$. The value (when it exists) of the series

$$\sum_{\alpha < \gamma} x_{\alpha}$$

is defined recursively as follows. If $\gamma = 0$, then

$$\sum_{\alpha < 0} \mathbf{x}_{\alpha} = 0$$

If $\gamma = \beta + 1$ is a successor, then

$$\sum_{\alpha < \gamma} \mathbf{x}_{\alpha} = \sum_{\alpha < \beta} \mathbf{x}_{\alpha} + \mathbf{x}_{\beta} ,$$

provided the series on the right-hand side converges. If γ is a limit, then

$$\sum_{\alpha < \gamma} \mathbf{x}_{\alpha} = \lim_{\beta < \gamma} (\sum_{\alpha < \beta} \mathbf{x}_{\alpha}) ,$$

where the limit is taken in the norm topology of X .

Supported in part by National Science Foundation grant MCS 77-04049 A01.

A transfinite sequence $(x_{\alpha})_{\alpha < \eta}$ of vectors is called a <u>basis</u> for X iff for each $y \in X$, there is a unique sequence $(c_{\alpha})_{\alpha < \eta}$ of scalars such that

$$y = \sum_{\alpha < \eta} c_{\alpha} x_{\alpha}$$
.

Let η be an ordinal, and let $f\colon [0,\eta] \twoheadrightarrow IR$ be a function. The square variation of f is

(*)
$$\sup(\sum_{i=1}^{n} |f(\alpha_{i}) - f(\alpha_{i-1})|^{2})^{1/2}$$

where the sup is taken over all finite sequences $\alpha_0 < \alpha_1 < \alpha_2 < \ldots < \alpha_n$ in $[0, \eta]$. Let $J(\eta)$ be the set of all continuous functions f on $[0, \eta]$ with finite square variation and f(0) = 0. Then $J(\eta)$ is a Banach space with norm (*). Alternately, let $\widetilde{J}(\eta)$ be the set of all functions f on $[0, \eta]$ with finite square variation and f(0) = 0. For infinite η , the unique order preserving map of $[0, \eta]$ onto the non-limits in $[0, \eta]$ induces an isometry of $J(\eta)$ onto $\widetilde{J}(\eta)$.

We begin by computing a basis for $\,J(\,\eta)$. If $\,\alpha\,\in\,[\,0,\eta]$, define $\,h_{\!\alpha}\,\in\,J(\,\eta)$ by

$$h_{\alpha} = X_{\alpha, \eta}$$
.

Clearly, $\|h_{\alpha}\| = 1$. Define a projection P_{α} on $J(\eta)$ by

$$P_{\alpha}f = f\mathbf{x}_{[0,\alpha]} + f(\alpha)\mathbf{x}_{[\alpha,\eta]}$$

<u>PROPOSITION 1</u>. The transfinite sequence $(h_{\alpha})_{\alpha < \eta}$ is a basis for the Banach space $J(\eta)$.

<u>Proof</u>: Let $f \in J(\eta)$. I claim first that if γ is a limit ordinal, then $\lim_{\beta < \mathbf{y}} \|P_{\beta}f - P_{\gamma}f\| = 0$. Let $\varepsilon > 0$. There exists a finite sequence $\alpha_0 < \alpha_1 < \ldots < \alpha_n$ in $[0,\eta]$ with

$$\left\| \mathbb{P}_{\mathbf{y}} \mathbf{f} \right\|^{2} < \sum_{i=1}^{n} \left\| \mathbb{P}_{\mathbf{y}} \mathbf{f}(\alpha_{i}) - \mathbb{P}_{\mathbf{y}} \mathbf{f}(\alpha_{i-1}) \right\|^{2} + \epsilon$$

Since \mathbb{P}_{γ} is constant on $[\gamma, \eta]$, we may assume $\alpha_n \leq \gamma$. Since f is continuous at γ , we may assume $\alpha_n < \gamma$. Consider $\beta \in]\alpha_n, \gamma[$. Then the same sequence $\alpha_0 < \alpha_1 < \ldots < \alpha_n$ shows that $\|\mathbb{P}_{\beta}f\|^2 > \|\mathbb{P}_{\gamma}f\|^2 - \varepsilon$. Now $\mathbb{P}_{\beta}f$ is constant on $[\beta, \gamma]$ and $(\mathbb{P}_{\gamma}-\mathbb{P}_{\beta})f$ is constant on $[0,\beta]$, so

$$\left\| \mathbb{P}_{\boldsymbol{\gamma}} \mathbf{f} \right\|^2 \geq \left\| \mathbb{P}_{\boldsymbol{\beta}} \mathbf{f} \right\|^2 + \left\| (\mathbb{P}_{\boldsymbol{\gamma}} - \mathbb{P}_{\boldsymbol{\beta}}) \mathbf{f} \right\|^2 .$$

$$\mathbf{f} = \sum_{\alpha < \eta} \mathbf{c}_{\alpha} \mathbf{h}_{\alpha}$$

This is proved by the equation $\sum_{\alpha < \gamma} c_{\alpha} c_{\alpha} = P_{\gamma} f$, which follows by induction on γ . <u>COROLLARY</u>. The space $J(\eta)$ is separable if and only if the ordinal η is countable.

Next we consider duals and preduals for $J(\eta)$. For $\alpha \in]0,\eta]$, define $e_{\alpha} \in J(\eta)^*$ by $e_{\alpha}(f) = f(\alpha)$. Then $||e_{\alpha}|| = 1$.

<u>PROPOSITION 2</u>. The closed linear span Y of $\{e_{\alpha} : \alpha \in [0, \eta]\}$, α not a limit ordinal) is an isometric predual of $J(\eta)$ in the sense that Y* is isometric to $J(\eta)$.

<u>Proof</u>: The space Y is a norming space of functionals for $J(\ \eta)$. Indeed, functionals of the form

$$\sum_{i=1}^{n} t_i(e_{\alpha_i} - e_{\alpha_i})$$

(where $\alpha_0 < \alpha_1 < \ldots < \alpha_n$ are non-limits and $\Sigma |\mathbf{t_i}|^2 \leq 1$) have norm 1 and norm $J(\eta)$ isometrically. The unit ball $B = \{f \in J(\eta) : ||f|| \leq 1\}$ is compact in the topology of pointwise convergence on $\{e_\alpha : \alpha \text{ not a limit}\}$. To see this, consider a net f_θ in B. By taking a subnet, we may assume $f_\theta(\alpha)$ converges for all non-limits α , call that limit $f(\alpha)$. If $\alpha_0 < \alpha_1 < \ldots < \alpha_n$ are non-limits, then

$$\sum_{i=1}^{n} \left| \mathbf{f}(\boldsymbol{\alpha}_{i}) - \mathbf{f}(\boldsymbol{\alpha}_{i-1}) \right|^{2} \leq 1 \quad .$$

From this it follows that the limits $\lim_{\alpha < \beta} f(\alpha)$ exist for limit ordinals β , call these limits $f(\beta)$. Then $f \in B$ and $f_{\beta} \neq f$ pointwise on the non-limits.

Finally, since B is bounded, it is compact in the topology $\sigma(J(\eta), Y)$. Therefore $J(\eta) = Y^*$ isometrically (cf. [2, V.5.7]). \Box

We will see below that $J(\eta)^*$ has the Radon-Nikodym property. It follows from this that the isometric predual is unique [5].

<u>PROPOSITION 3</u>. The sequence $(e_{\alpha})_{\alpha \in [0, m]}$ is a basis for $J(\eta)^*$.

<u>Proof</u>: Let $\ell \in J(\eta)^*$. We first claim that if γ is a limit, then $\lim_{\beta < \gamma} \ell(h_{\beta})$ exists. Suppose it does not exist. Then there are real numbers a < b and ordinals $\beta_0 < \beta_1 < \beta_2 < \ldots < \gamma$ with $\ell(h_{\beta_{2i}}) < a$, $\ell(h_{\beta_{2i+1}}) > b$. But for each n, we

have $\|\sum_{i=1}^{n} (h_{\beta_{2i-1}} - h_{\beta_{2i}})\| = (2n)^{1/2}$, so

$$\begin{split} n(b-a) &< \mathfrak{g}(\sum_{i=1}^{n} (h_{\beta_{2i-1}} - h_{\beta_{2i}})) \\ &\leq \|\mathfrak{g}\| (2n)^{1/2} , \end{split}$$

so $||\ell|| = \infty$, a contradiction.

Define, for $Y \in [0, \eta]$,

$$u_{\gamma} = \begin{cases} \ell(h_{\gamma-1}) , & \gamma \text{ non-limit} \\ \lim_{\beta < \gamma} \ell(h_{\beta}) , & \gamma \text{ limit}. \end{cases}$$

Then $\lim_{\beta < \gamma} u_{\beta} = u_{\gamma}$ for limit ordinals γ . I claim that $\boldsymbol{\ell} = \sum_{\alpha \in]0, \eta]} (u_{\alpha} - u_{\alpha+1}) e_{\alpha}$. The series converges weak* to $\boldsymbol{\ell}$, so it is only required to show that the partial sums converge in norm at any limit ordinal γ . This calculation is the same as the one which shows the basis for the original James space is shrinking. See, for example, $[9, p. 27^{4}, (d)]$. \Box

Propositions 2 and 3 can be used to describe the canonical embedding of $J(\eta)$ into $J(\eta)^{**}$. In fact (if η is infinite), $J(\eta)^{**}$ is isometric to $\widetilde{J}(\eta+1)$, and the set-theoretic inclusion $J(\eta) \rightarrow \widetilde{J}(\eta+1)$ is the canonical embedding. This shows that $J(\eta)^{**}$ is isometric to $J(\eta+1)$, and isomorphic to $J(\eta)$ itself.

<u>COROLLARY</u>. $J(\eta)^*$ is separable if and only if η is countable.

With the understanding of $J(\,\eta)\,$ provided above, many of its properties can be determined.

<u>PROPOSITION 4</u>. The space $J(\eta)$ has the Radon-Nikodym property.

<u>Proof</u>: Consider the predual Y given in Proposition 2. By a result of Uhl [1, p. 82, Cor. 6], it suffices to show that every separable subspace of Y has separable dual. Let Z be a separable subspace of Y. Each element of Z is in the closed span of a countable set of e_{α} , so there is a countable set $R \subseteq [0, \eta]$ of nonlimits such that $Y_1 = \text{cl sp}\{e_{\alpha} : \alpha \in R\}$ contains Z. Then the closure \overline{R} is also countable; let η_1 be its order type. Then Y_1^* is isometric to $J(\eta_1)$, which is separable. \Box <u>PROPOSITION 5</u>. The dual $J(\eta)$ * has the Radon-Nikodym property.

<u>PROOF</u>: Any separable subspace of $J(\eta)$ is in the closed span of countably many vectors h_{α} . Therefore, as above, the dual of such a closed span is isometric to $J(\eta_1)^*$ for some countable ordinal η_1 . \Box

PROPOSITION 6. If
$$\ell \in J(\eta)^*$$
, then ℓ is a Borel function on $(J(\eta), weak^*)$.

<u>Proof</u>: By Proposition 3, it suffices to show that e_{γ} is weak*-Borel for all $\gamma \in]0, \eta]$. If γ is a non-limit, then e_{γ} is weak*-continuous. Assume γ is a limit. The restriction map of $J(\eta)$ onto $J(\gamma)$ is weak*-continuous, so we may assume $\gamma = \eta$. For $\lambda \in \mathbb{R}$, $k \in \mathbb{N}$, $r \in \mathbf{Q}$, define

$$\begin{split} \mathbb{P}_{1}(\mathbf{r}) &= \{\mathbf{f} \in J(\eta) : \|\mathbf{f}\| \leq \mathbf{r}\}\\ \mathbb{P}_{2}(\mathbf{r},\mathbf{k},\lambda) &= \bigcup \{\mathbf{f} \in J(\eta) : \sum_{i=1}^{n} |\mathbf{f}(\alpha_{i}) - \mathbf{f}(\alpha_{i-1})|^{2} > \mathbf{r}^{2} - \frac{1}{\mathbf{k}^{2}}, \ \mathbf{f}(\alpha_{n}) < \lambda - \frac{1}{\mathbf{k}} \}, \end{split}$$

where the union is over all finite sequences $\alpha_0 < \alpha_1 < \ldots < \alpha_n$ of non-limits, and

$$P(\mathbf{r},\mathbf{k},\lambda) = P_1(\mathbf{r}) \cap P_2(\mathbf{r},\mathbf{k},\lambda)$$

Then $P_{\gamma}(\mathbf{r})$ is weak*-closed and $P_{\gamma}(\mathbf{r},\mathbf{k},\lambda)$ is weak*-open. But

$$\{ \mathbf{f} \in J(\eta) : \mathbf{f}(\eta) < \lambda \} = \bigcap_{k=1}^{\infty} \bigcup_{r>0} \mathbb{P}(r,k,\lambda) ,$$

so {f: $f(\eta) < \lambda$ } is weak*-Borel.

<u>PROPOSITION 7</u>. Suppose $\eta \ge \omega_1$, the least uncountable ordinal. Then e_{ω_1} is not a weak*-Baire function.

<u>Proof</u>: The set $R = \{h_{\alpha} : \alpha \in [0, \omega_{\underline{l}}]\}$ is weak*-homeomorphic to $[0, \omega_{\underline{l}}]$. Any real-valued continuous function on $[0, \omega_{\underline{l}}]$ is constant on some interval $[\gamma, \omega_{\underline{l}}]$ with $\gamma < \omega_{\underline{l}}$, so any Baire function shares this property. But $e_{\omega_{\underline{l}}}(h_{\alpha}) = 1$ for $\alpha < \omega_{\underline{l}}$ and $e_{\omega_{\underline{l}}}(h_{\omega_{\underline{l}}}) = 0$. Therefore, $e_{\omega_{\underline{l}}}$ is not a Baire function on R, and a fortiori on $J(\eta)$.

Since $J(\eta)$ has the Radon-Nikodym property, the weak and weak*-universally measurable sets coincide [8], [3, Theorem 1.5]. For this reason, the following is somewhat surprising.

<u>PROPOSITION 8</u>. There is a weak-Borel subset of $J(w_1)$ which is not weak*-Borel.

<u>Proof</u>: Let $R = \{h_{\alpha} : \alpha \in [0, w_1]\}$. Then $(R, weak^*)$ is homeomorphic to $[0, w_1]$. But

$$\{ f \in R: (e_{\alpha+1}-e_{\alpha})(f) > \frac{1}{2} \} = \{ h_{\alpha} \} , \alpha < \omega_{1}$$

$$\{ f \in R: e_{\omega_{1}}(f) < \frac{1}{2} \} = \{ h_{\omega_{1}} \} ,$$

so (R,weak) is discrete. So every subset of R is a weak-open set. But there is a subset of R which is not weak*-Borel. (A subset $A \subseteq [0, w_1]$ such that neither A nor its complement contains a closed unbounded set is not Borel.)

Although the statement of the following proposition does not involve measurability questions, they are helpful in the proof.

<u>PROPOSITION 9</u>. The space $J(\omega_1)$ admits no equivalent dual norm that is weakly locally uniformly convex.

<u>Proof</u>: In a dual space with weakly locally uniformly convex norm, the weak and weak* topologies coincide on the surface of the unit ball. But then by [4, Theorem 2.1] the weak and weak* Borel algebras coincide on the entire space. So by Proposition 8, the space $J(w_1)$ admits no such norm.

The terms used in the following can be found in [4].

<u>PROPOSITION 10</u>. The space $J(w_1)$ is not realcompact, not measure-compact, not Lindelof, not weakly compactly generated, not isomorphic to a subspace of a weakly compactly generated space, and fails the Pettis integral property.

<u>Proof</u>: We show that $J(w_1)$ is not realcompact; the other assertions follow from this. Define a zero-one measure μ on Baire $([0,w_1[)$ by $\mu(B) = 0$ iff B is countable, $\mu(B) = 1$ iff $[0,w_1[\setminus B \text{ is countable}.$ The map $\varphi: [0,w_1[+ J(w_1) \text{ de$ $fined by } \varphi(\alpha) = h_{\alpha}$ is scalarly measurable since $e_{\beta} \circ \varphi$ is constant a.e. for each β . The image $\lambda = \varphi(\mu)$ is a zero-one measure on Baire $(J(w_1), \text{weak})$. But λ is not τ -smooth: If $A \subset [0,w_1[$ is countable, then

$$\mathbb{Z}_{A} = \{ f \in J(w_{1}) : f(\alpha) = 0 \text{ for all } \alpha \in A, f(w_{1}) = 1 \}$$

is a weak-zero-set, and $\lambda(Z_A) = 1$. But the collection Z_A decreases to \emptyset . Thus $(J(w_1), weak)$ is not realcompact. \Box

If the continuum hypothesis holds, then there is a bijection $\theta: [0,1] \rightarrow [0,w_1[$, and $\varphi \circ \theta$ provides an example of a bounded, scalarly measurable function on [0,1]which is not Pettis integrable with respect to Lebesgue measure, that is, $J(w_1)$ fails the Lebesgue-PIP. Similarly, if Martin's Axiom holds, $J(w_2)$ fails the Lebesgue-PIP, where w_2 is the least ordinal of power c. Using the same measure space $[0, \omega_1[$ and the map $\alpha \neq e_{\alpha+1}$, it can be shown similarly that the predual Y of $J(\omega_1)$ is not realcompact.

References

- 1. J. Diestel and J.J. Uhl, Vector Measures. Mathematical Surveys 15, American Mathematical Society, Providence, RI, 1977.
- N. Dunford and J.T. Schwartz, Linear Operators I. Interscience, New York, 1957.
- 3. G.A. Edgar, Measurability in a Banach space. Indiana Univ. Math. J. 26 (1977), 663-677.
- 4. G.A. Edgar, Measurability in a Banach space II. Indiana Univ. Math. J. 28 (1979), 559-579.
- G. Godefroy, Espaces de Banach: Existence et unicité de certains préduaux. Ann. Inst. Fourier Grenoble. 28, 3(1977), 87-105.
- J. Hagler and E. Odell, A Banach space not containing l₁ whose dual ball is not weak* sequentially compact. Illinois J. Math. 22 (1978), 290-295.
- R. Haydon, Some more characterizations of Banach spaces containing l₁. Math. Proc. Camb. Phil. Soc. 80 (1976), 269-276.
- L. Schwartz, Propriété de Radon-Nikodym. Séminaire Maurey-Schwartz (1974-1975), Exp. no. V-VI.
- I. Singer, Bases in Banach Spaces I. Die Grundlehren der Mathematischen Wissenschaften 154, Springer-Verlag, 1970.
- M. Talagrand, Sur la structure borélienne des espaces analytiques, Bull. Sci. Math. (2) 101 (1977), 415-422.

Department of Mathematics The Ohio State University Columbus, Ohio 43210