
A LONG JAMES SPACE 

G. A. Edgar 

This paper investigates some of the measurability properties of the James-type 

Banach space J(~l ) obtained with an uncountable ordinal for index set. This space 

J(Wl) is a second dual space with the Radon-NikodymProperty but is not weakly com- 

pactly generated. This answers a question of P. Morris reported in [1, p. 87]. 

(This question has also been answered by W. J. Davis, unpublished.) The space 

J(~l) is a dual RNP space, but it admits no equivalent weakly locally uniformly 

convex dual norm. This answers a question in Diestel-Uhl [1, p. 212]. The space 

J(~l ) is a dual RNP space, but there is a bounded, scalarly measurable function on 

some probability space with values in J(ml) that is not Pettis integrable. The 

previously known "examples" of this phenomenon depend on the existence of a measur- 

able cardinal [3~ Example (1)]. The space is a dual RNP space, but the weak and 

weak* Borel sets are not the same. This answers a question asked in [lO] and [4]. 

Other properties of this space can be found in the literature. For example, 

Hagler and Odell [6] have shown that every infinite-dimensional subspace of J(~l ) 

contains an isomorphic copy of 2 . 

We will use the following definitions for transfinite series and bases in a 

Banach space X . Let ~ be an ordinal, and let x~ E X be given for each J < 9 . 

The value (when it exists) of the series 

z x 
~<y 

is defined recursively as follows. If y = 0 ~ then 

If y = ~+i 

Z 
c~<O 

is a successor, then 

provided the series on the right-hand side converges. If is a limit, then 

Z XC~ = lim ( Z x ) 

where the limit is taken in the norm topology of X . 
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A transfinite sequence (x(x)~< ~ of vectors is called a basis for X iff for 

each Y 6 X , there is a unique sequence (cG)G<~ of scalars such that 

y= z %x 
G<~ 

Let ~ be an ordinal, and let f: [0,~] -~ IR be a function. The square 

variation of f is 

n 

(*) sup( Z 
i=l 

I f (~ i )  - f (~i_1)  12) J-/2 

where the sup is taken over all finite sequences S0 < ~i < ~2 <'" "< <Zn in [0,~] . 

Let J(~) be the set of all continuous functions f on [0,~] with finite square 

variation and f(0) = 0 . Then J(~) is a Banach space with norm (*). Alternately, 

let ~(~) be the set of all functions f on [0,~,[ with finite square variation 

and f(0) = 0 . For infinite ~ , the unique order preserving map of [0,~[ onto 

the non-limits in [0,1]] induces an isometry of J(~) onto ~(~) . 

We begin by computing a basis for J(~) . If ~ 6 [0,~] , define h a 6 J(~) 

by 

h = x]~, sl] 

Clearly, llhGll = 1 . Define a projection P~ on J(~) by 

P~f = fx[0,~ ] + f(@×]~,q] 

PROPOSITION i. The transfinite sequence (h~)~<~ is a basis for the Banach space 

J(~) • 

Proof: Let f 6 J(~) . I claim first that if y is a limit ordinal, then 

l~<y llP~f-P~fll = 0 Let s > 0 There exists a finite sequence ~0 <(~l <'''<(~ 
• " n 

in [0,~] with 

n 

lip fll 2 < ~ IPyf(~ i) -Pyf(~i_1)12 + ~ 
i=l 

Since P f is constant on [y,~] , we may assume ~ < 7 . Since f is continuous 
7 n- 

at ~ , we may assume a n < y . Consider 5 6](~n,?[ - Then the same sequence 

shows that llP~fll2 > ~  lIP fll 2 - s . NOW ~Paf is constant on [~,y] 
~0 < ~i <.-.< ~n 
and (Py-Pb)f is constant on [0,~] , so 

llP~fll 2 >_ llP~fll 2 + II(P~-P~)fll 2 
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~he~fo~ II<P -%)fll 2 ! IIP~fll - IIPBfll < ~ 

Now given f 6 J(~) , define c(z = ~+i) - f(c~) for c~ 6 [0,9[ . Then 

f: ~ hh~ 
~<~ 

This is proved by the equation E cGh ~ = PTf , which follows by induction on Y. [] 

COROLIARY. The space J(1]) is separable if and only if the ordinal I] is countable. 

Next we consider duals and preduals for J(~) . For ~ 6 ]O~] ~ define 

% EJ(~)* by %(f): f(~) . Then lleIl=l. 

PROPOSITION 2. The closed linear span Y of [ej: J 6 ]O,~] , J not a limit or- 

dinal} is an isometric predual of J(~) in the sense that Y* is isometric to 

J(~) • 

Proof: The space Y is a norming space of functionals for J(~) . Indeed, func- 

tionals of the form 

n 

z ti( ~i 
i=l - %i-1 ) 

(where ~0 < ~i < "'" < an are non-limits and Zlti 12 <_ i) have norm 1 and norm 

J(~) isometrically. The unit ball B = [f 6 J(~): llfll <_ l] is compact in the top- 

ology of pointwise convergence on {e : ~ not a limit} . To see this, consider a 

net f¢ in B . By taking a subnet, we may assume fe(~) converges for all non- 

limits ~ , call that limit f(~) . If ~0 < ~i <'" "< ~n are non-limits, then 

n 12 
If(~ i) - f(~i.l ) <_ z 

i=l 

From this it follows that the limits lim f(~) exist for limit ordinals ~ , call 
~< 

these limits f(~) . Then f 6 B and f9 ÷ f point-wise on the non-limits. 

Finally, since B is bounded, it is compact in the topology q(J(~),Y) . There- 

fore J(~) = Y* isometrically (cf. [2, V.5.7]). 

We will see below that J( I])* has the Radon-Nikodym property. It follows from 

this that the isometric predual is unique [5]. 

PROPOSITION 3. The sequence (e~)~E]O,~ ] is a basis for J(~)* 
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Proof: Let ~ E J(1])* • We first claim that if ~ is a limit, then 

exists. Suppose it does not exist. Then there are real numbers a < b 

) < a , ~(h 6 ) > b . But for each 60 < 61 < 62 <...< y with Z(h62 i 
2i+l 

n (2n)i/2 
have lli=iZ (h~2i_l- h62i)II = , SO 

n 
n(b-a) < ~( 

i=l (h62i-i- h~2i)) 

_< 11~l/(2n) 1 / 2  

so II~II : ~, a contradiction. 

Define, for Y E ]0,1]] , 

I ~(hy_l) , y non-limit 

uy = lim ~(h~) y limit 
6<Y P ' 

and ordinals 

n ~ we 

Then li~<y u 6 = uy for limit ordinals y . I claim that ~ = Z (u~-u~+l)e ~ . 
~E]O, 1]] 

The s e r i e s  c o n v e r g e s  wea~f k t o  ~ , so i t  i s  o n l y  r e q u i r e d  t o  show t h a t  t h e  p a r t i a l  

sums converge in norm at any limit ordinal y . This calculation is the same as the 

one which shows the basis for the original James space is shrinking. See, for example, 

[9, P. 274, (d)]. [] 

Propositions 2 and 3 can be used to describe the canonical embedding of J(1]) 

into J(~)** . In fact (if 1] is infinite), J(1])** is isometric to ~(I}+i) , and 

the set-theoretic inclusion J(1]) + ~(I]+1) is the canonical embedding. This shows 

that J(~)** is isometric to J(~+l) , and isomorphic to J(~) itself. 

COROLLARY. J(~)* is separable if and only if ~ is countable. 

With the understanding of J(~) provided above, many of its properties can be 

determined. 

PROPOSITION 4. The space J(~) has the Radon-Nikodym property. 

Proof: Consider the predual Y given in Proposition 2. By a result of Uhl [1, 

p. 82, Cot. 6], it suffices to show that every separable subspace of Y has separable 

dual. Let Z be a separable subspace of Y . Each element of Z is in the closed 

span of a countable set of e~ , so there is a countable set R ~ [0,1]] of nonlimits 

such that Y1 = cl sp[e~: ~ E R) contains Z . Then the closure ~ is also count- 

able; let 1]1 be its order type. Then Y~ is isometric to J(~l ) , which is sep- 

arable. [] 
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PROPOSITION ~. The dual J( 1])* has the Radon-Nikodym property. 

PROOF: Any separable subspace of J(~) is in the closed span of countaBlymany 

vectors h . Therefore, as above, the dual of such a closed span is isometric to 

J(~)* for some countable ordinal 1]1 " 

PROPOSITION 6. If ~ E J(~)* , then ~ is a Borel function on (J(1]),weak*) . 

Proof: By Proposition 3, it suffices to show that e is weak*-Borel for all 
7 

Y E ]0,1]] . If 7 is a non-limit~ then e 7 is weak*-continuous. Assume y is 

a limit. The restriction map of J(~) onto J(7) is weak ~- continuous, so we may 

assume y = 1] . For k E IR, k E IN, r E ~ , define 

Pl(r) = [f E J(1]): llfll <_ r} 

P2(r,k,k) = U(f E J(1]): 
n 2 1 1 
Z If((~i)-~i_ I) I 2 > r - ~ , f((~n) < k - ~ ] , 

i=l 

where the union is over all finite sequences ~O < ~l <" ""< an of non-limits, and 

~r,k,~) = Pl(r) n P2(r,k,k) 

Then Pi(r) is weak*-closed and P2(r,k,k) is weak*-open. But 

[f E J(1]): f(1]) < k} = O U P(r,k,k) , 
k=l r>O 

so {f: f(1]) < k} is weak*-Borel. [] 

PROPOSITION 7. Suppose 1] ~ w I , the least uncountable ordinal. Then ewl is not 

a weak*-Baire function. 

Proof: The set R = {h~: ~ E [O, Wl]] is weak*-homeomorphic to [O, Wl] . Any 

real-valued continuous function on [O,wl] is constant on some interval [7,w I] 

with Y < w I , so any Baire function shares this property. But ewl(h~) = I for 

< ~ and ewl(hwl) = 0 . Therefore, ewl is not a Baire function on R , and 

afortiori on J(~) . [] 

Since J(~) has the Radon-Nikodym property, the weak and weak*-universally 

measurable sets coincide [8], [3, Theorem 1.~]. For this reason, the following is 

somewhat surprising. 

PROPOSITION 8. There is a weak-Borel subset of J(Wl) which is not weak*-Borel. 
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Proof: Let R = [ha: ~ E [O, Wl]} • Then (R,weak*) is homeomorphic to [O,w I] . 

But 

1 
{f E R: (e +l-e~)(f ) > ~ } = [~} , ~ < Wl 

ewl( i } {f E R: f) < ~ } = {hwl 

SO (R,weak) is discrete. So every subset of R is a weak-open set. But there 

is a subset of R which is not weak*-Borel. (A subset A g [O, wl[ such that neither 

A nor its complement contains a closed unbounded set is not Borel.) 

Although the statement of the following proposition does not involve measur- 

ability questions, they are helpful in the proof. 

PROPOSITION 9- The space J(Wl) 

locally uniformly convex. 

admits no equivalent dual norm that is weakly 

Proof: In a dual space with weakly locally uniformly convex norm, the weak and 

weak* topologies coincide on the surface of the unit ball. But then by [4, Theorem 

2.1] the weak and weak ~ Borel algebras coincide on the entire space. So by Propo- 

sition 8, the space J(Wl) admits no such norm. [] 

The terms used in the following can be found in [4]. 

PROPOSITION i0. The space J(Wl) is not realcompact, not measure-compact, not 

Lindelof, not weakly compactly generated, not isomorphic to a subspace of a weakly 

compactly generated space, and fails the Pettis integral property. 

Proof: We show that J(Wl) is not realcompact; the other assertions follow from 

this. Define a zero-one measure ~ on Baire ([O, Wl[) by ~(B) = O iff B is 

countable• ~(B) = 1 iff [O, Wl[\B is countable. Themap ~: [O, Wl[ + J(Wl) de- 

fined by ~) = b~ is scalarly measurable since es o~ is constant a.e. for each 

B • The image k = ~) is a zero-one measure on Baire (J(Wl),weak) . But k 

is not T-smooth: If A~ [O,~l[ is countable, then 

Z A = {f EJ(ml): f(~) = 0 for all~ EA, f(w l) = i} 

is a weak-zero-set, and X(ZA) = 1 . But the collection Z A decreases to ~ . 

Thus (J(Wl),weak) is not realcompact. [] 

If the continuum hypothesis holds• then there is a bijection e: tO, l] + [O, Wl[ , 

and ~oe provides an example of a bounded, scalarly measurable function on [O, 1] 

which is n~t Pettis integrable with respect to Lebesgue measure, that is, J(~l ) 

fails the Lebesgue-PIP. Similarly, if Martin's Axiom holds~ J(w c) fails the 

Lebesgue-PIP, where ~c is the least ordinal of power c . 
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Using the same measure space [O,w![ and the map ~ ÷ e~+ I , it can 6e shown 

similarly that the predual Y of J(Wl) is not realcompact. 
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