A LONG JAMES SPACE

G. A, Edgar

This paper investigates some of the measurability properties of the James-type
Bsnach space J(wl) obtained with an uncountable ordinal for index set. This space
J(wl) is a second dual space with the Radon-Nikodym Property but is not weakly com-
pactly generated, This answers a question of P, Morris reported in [1, p. 87].
(This question has also been answered by W. J. Davis, unpublished.) The space
J(wl) is a dual RNP space, but it admits no equivalent weakly locally uniformly
convex duasl norm. This answers a question in Diestel-Uhl [1, p. 212]. The space
J(wl) is a dual RNP space, but there is a bounded, scalarly measurable function on
some probability space with values in J(wl) that is not Pettis integrable. The
previously known "examples™ of this phenomenon depend on the existence of & measur-
able cardinal [3, Example (1)]. The space is a dual RNP space, but the wesk and
weak¥* Borel sets are not the same. This answers a question asked in [10] and [i].

Other properties of this space can be found in the literature. For example,
Hagler and Odell [6] have shown that every infinite-dimensional subspace of J(wl)
contains an isomorphic copy of 22 .

We will use the following definitionsg for transfinite series and basges in a
Banach space X . Let T be an ordinal, and let Xy € X be given for each < M.

The value (when it exists) of the series

T x
a<Y o

is defined recursively as follows. If vy = O , then

<0
If v =g+l is a successor, then
T X = L ox, + X N
<y ¢ o &P
provided the series on the right-hand side converges., If v is a limit, then
L x, = lim (% %1) ,
o<y gy o<B

where the limit is taken in the norm topology of X .
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of vectors is called a basis for X iff for

of scalars such that

A transfinite sequence (xoz)oc<’q

each y € X , there is & unique sequence (Cot)oK'ﬂ

Let T be an ordinal, and let f: [Q, N] ~ IR be a function. The square
varigtion of f is
n
() sup( T |8(oy) -2y )|
i=1
where the sup is taken over all finite sequences O, <, <a, <L.<oy in [0,7] .
Let J(T) be the set of all continuous functions f on [0,7] with finite square
variation and £(0) = O . Then J(7) is a Banach space with norm (*). Alternately,
let 3( T) be the set of all functions f on [0,N] with finite square variation
and f{0) = O . TFor infinite 1 , the unique order preserving map of [O,TM[ onto
the non-limits in [O,T] induces an isometry of J{7) onto .
We begin by computing a basis for J(7) . If « €[0,n] , define h, € J{n
by

Yo = Xa,my

Clearly, [ |l = 1. Define a projection P, on J(n) by

Paf = m[o,a] + f(a)xja’m .

PROPOSITION 1. The transfinite sequence (hcx) is a basis for the Banach space

an .

o<,

Proof: Let f € J(M) . I claim first that if vy is a limit ordinal, then
M, HPﬁf -nyn = 0. Let ¢> 0. There exists a finite sequence o <oy <,..<a
in [O,7] with

eyl < 2 fegteg) <R ey )P e

Since ny is constant on [v,N] , we may assume o <y . Since f is continuous
at vy, we may assume O <y . Consider B €Jo n,y[ . Then the same sequence
Ay <@y <...<a shows that [Bf|” > }\Pvfﬂe

o] 1
and (Py-Pﬁ)f is constant on [O,B] , so

- ¢ . Now PRf is constant on [8,Y]

e g > eel « e e 2l
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meretore [|(2,-2,)7|° < el - Y22l < e

Now given f ¢ J(7) , define 'y = fla+l) - fla) for o € [0,M . Then

This is proved by the equation % 91@1 = PYf , which follows by induction on Y. O
o<y

COROLTARY, The space J(1) is separable if and only if the ordinal T is countable.

Next we consider duals and predusls for J(1) . For « € 10,T] , define
ey € Jm* by ea(f) = f{a) . Then ]1%‘“ =1.
PROPOSITION 2, The closed linear span Y of {ea: o € 10,M , & nota limit or-
dinal} is an isometric predual of J(T) in the sense that Y* dis isometric to

Jon .

Proof: The space Y is a norming space of functionals for J(7) , Indeed, func-

tionals of the form

(where Ay <0y < ...<a  are non-limits and Z|ti|2 < 1) have norm 1 and norm
J{1) isometrically. The unit ball B = {f ¢ J(M): ||f]] < 1} is compact in the top-
ology of pointwise convergence on {ea: o not a limit} . To see this, consider a

net f, in B . By taking a subnet, we may assume fe(Oé) converges for all non-

¢}
limits o , call that limit (o) . If oy <oy <...<a  are non-limits, then
a 2
=z ECTO R CDY R
i=1

From this it follows that the limits lim f(a) exist for limit ordinals B , call
a< B
these limits f(p) . Then f € B and fe + f pointwise on the non-limits.

Finally, since B is bounded, it is compact in the topology o(J(M),Y) . There~
fore J(M) = ¥ isometrically (cf. [2, V.5.7]). O

We will see below that J{T)* has the Radon-Nikodym property. It follows from
this that the isometric predusl is unique [5].

PROPOSITION 3. The sequence is a basis for J(M)* .

(ea)oze]o, il
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Proof: Let 4 € J(M* . We first claim that if vy is a limit, then limB<Y£(ha)
exists. Suppose it does not exist. Then there are real numbers a < b and ordinals
B.< B, <B,<...<¥y with gh, ) <a #h )>b . But for each n , we

0 1 2 B ’ Brs
2i 2i+1

have H.; (h -h, )| = (2n)l/2 , so

i-1  Pojo1 Pos

n
n(b-a) < g ¥ (hB - By ))
i=1 Peoia1 Poi

1/2

< lleli(en) )
so ||4l| = », a contradiction.
Define, for Y ¢ ]O,T] ,
. ﬂ(hY_l) , Y non-limit
Y lin 4(h,) , Y Limit .
p<y
Then limB<Y uB = uY for limit ordinals v . I claim that §¢ = z (qx-ua+l)qx .

aelo,

The series converges weakX to ¢ , so it is only required to show that the partial
sums converge in norm at any limit ordinal v . This calculation is the same as the
one which shows the basis for the original James space is shrinking, See, for example,
(9, p. 274, (&)]. O

Propositions 2 and 3 can be used to describe the canonical embedding of J(T)
into J(M)** . In fact (if 7 is infinite), J(M)** is isometric to J(™1) , ana
the set-theoretic ineclusion J(T) > J(M+1l) is the canonical embedding., This shows

that J(M)** is isometric to J(T+1l) , and isomorphic to J(7) itself,
COROLIARY. J(M)* is separable if and only if 1 is countable.

With the understanding of J(1) provided above, many of its properties can be

determined,
PROPOSITION 4. The space J(T) has the Radon-Nikodym property.

Proof: Consider the predﬁ;l Y given in Proposition 2. By a result of Unl [1,

p. 82, Cor, 6], it suffices to show that every separable subspace of Y has separable
dual. Let Z be a separable subspace of Y . Each element of Z is in the closed
span of a countable set of e, » SO there is a countable set R g [0,7] of nonlimits
such that Yl = cl sp{gx: a € R} contains Z . Then the closure R is also count-
able; let “1 be its order type. Then Y% is isometric to J(ﬂl) , which is sep-

1
arable. [
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PROPOSITION 5. The dual J(T)* has the Radon-Nikodym property.

PROOF: Any separable subspace of J(T) dis in the closed span of countably many
vectors hcz . Therefore, as above, the dual of such a closed span is isomefric to
J( ﬂl)* for some countable ordinal My - 0

PROPOSITION 6. If 4 € J(MW* , then £ is a Borel function on (J(1),weak*) .

Proof: By Proposition 3, it suffices to show that eY is weak¥-Borel for all

vy €10,1 . If vy is a non-limit, then e_ is weak¥-continuous. Assume v is
a limit, The restriction map of J(T) onto J(y) is weak*-continuous, so we may
assume Yy =T, For A €IR, k € IN, r € & , define

P(r) = {£ € g(m: £ < r)

P (r,0) = ULE € a(1):  |fa)-fa, D> P -L sa)<n-L)
S(1,k,0) = UlT € n.ifll J)-flay T“kg,' " ~g 1

where the union is over all finite sequences o, <o, <.,.< ay of non-limits, and

O 1

Pr,k,\) = Pl(r} n By(r,k0) .

Then Pl(r) is weak¥*-closed and P,(r,k,A) is weak*-open. But

2

©

{fedm: gmM<rl= 0 U BrXkN\) ,
k=1 >0

so {f: £{1M) < A} is weak¥-Borel. O

PROPOSITION 7. Suppose 1> @ the least uncountable ordinal., Then e, is not
a weak¥-Baire function, .

Proof: The set R = (ha: a € [O,wlj} is weak*=homeomorphic to [O,u)l] . Any

regl-valued continuous function on [O,wl] is constant on some interval (v, wl]
with Y < @, , so any Baire function shares this property. But €y (hoz) = 1 for
1
o< w and e (h ) = 0. Therefore, e ig not a Baire function on R, and
e ] |

a fortiori on J(m) . O

Since J(7M) has the Radon-Nikodym property, the weak and weak*-universally
measurable sets coincide [8], [3, Theorem 1.5]. For this reason, the following is

somewhat surprising.

PROPOSITION 8, There is a weak-Borel subset of J{( wl) which is not weak*-Borel.
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Proof: Let R = {gu: a € [O,wl]} . Then (R,weak*) is homeomorphic to [O,wl] .
But

{f ¢R: (ea+l-qa)(f) > % } = {QX} ; @<y

{feRie (B)<E)=(n ) ,
et e 1
so {(R,weak) is discrete, So every subset of R is a weak-open set. But there
is a subset of R which is not weak¥-Borel, (A subset A& [O,wl{ such that neither
A nor its complement contains a closed unbounded set is not Borel.) O
Although the statement of the following proposition does not involve measur-
ability questions, they are helpful in the proof.

PROPOSITION 9. The space J( wl) admits no equivalent dual norm that is weakly
locally uniformly convex,

Proof: In a dual space with weakly locally uniformly convex norm, the weak and
weak* topologies coincide on the surface of the unit ball., But then by [4, Theorem
2.1] the weak and weak* Borel algebras coincide on the entire space, So by Propo-
sition 8, the space J( wl) admits no such norm. [J

The terms used in the following can be found in [47].

PROPOSITION 10, The space J( wl) is not realcompact, not measure-compact, not
Lindelof, not weakly compactly generated, not isomorphic to & subspace of a weakly
compactly generated space, and fails the Pettis integral property.

Proof: We show that J(w;) is not realcompact; the other assertions follow from
this, Define a Zzero-one measure yu on Baire ([O,wl[) by uw(B) = 0 iff B is
countable, u(B) =1 iff [0,w;[\B is countable. The map e [0,uw, [ ~ I(w) de-
fined by (&) = h, is scalarly measurable since e, op 1is constant a.e. for each
B . The image i = ¢{p) 1is a zero-one measure on Baire (J(wl),weak) . Bubt A
is not T-smooth: If A C [O,wl[ is countable, then

Z, = {r eJ(wl): f{a) = O for all @ € A, f(wl) = 1}

is a weak-zero-set, and )\(ZA) = 1 . But the collection ZA decreases to ¢ .

Thus (J(wl),weak) is not realcompact. O

If the continuum hypothesis holds, then there is a bijection 6: [0,1] ~ [O,wllf B
and ¢ of provides an example of a bounded, scalarly measurable function on [0,1]
which is not Pettis integrable with respect to Lebesgue measure, that is, J("’l)
fails the Lebesgue=-PIP, Similarly, if Martin's Axiom holds, J( wc) fails the

Lebesgue~-PIP, where W, is the least ordinal of power c¢ .



37

Using the same measure space [O,wl[ and the map « - €1 ? it can be shown
similarly that the predual Y of J(wl) is not realcompscth.
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